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We present a functional integration method for the averaging of continuous 
products/~, of N x N random matrices. As an application, we compute exactly 
the statistics of the Lyapunov spectrum of/~,. This problem is relevant to the 
study of the statistical properties of various disordered physical systems, and 
specifically to the computation of the multipoint correlators of a passive scalar 
advected by a random velocity field. Apart from these applications, our method 
provides a general setting for computing statistical properties of linear 
evolutionary systems subjected to a white-noise force field. 
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1. I N T R O D U C T I O N  

In this work  we give a deta i led  expos i t ion  of  a funct ional  in tegral  me thod  
for the averaging  of  t ime-ordered  exponent ia l s  of  N x N r a n d o m  matr ices  
which has found several  app l i ca t ions  in the s tudy  of  the s tat is t ical  p rope r -  
ties of  d i sordered  systems. 

The  me thod  was in t roduced  by  K o l o k o l o v  t2~ in the N = 2 case in o rde r  
to compu te  the pa r t i t i on  function of  the Heisenberg  fer romagnet ,  and  was 
thereafter  appl ied  to the s tudy of  one -d imens iona l  Ander son  loca l iza t ion  t31 
and to some p rob lems  o f  mesoscopic  physics,  t4~ Later ,  the same tech- 
niquet6.7~ wag used to ob t a in  ana ly t ica l  results  in the p r o b l e m  of  a passive 
scalar  advected  by a two-d imens iona l  r a n d o m  veloci ty  field. The  a p p r o a c h  
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of refs. 6 and 7 was then extended to the more general N-dimensional case 
in ref. 1. 

In the present work we present the method in its full generality and 
show that it allows one to compute exactly the statistics of the whole 
Lyapunov spectrum of the matrix/3, describing the time evolution of a linear 
system subjected to a white-noise force field. Such a spectrum is relevant ~8) 
in the computation of the multipoint correlators of the passive scalar (as 
well as in the computation of the correlators of passive vectors and ten- 
sors); in this case the matrix/3, describes the time evolution of particles in 
a turbulent fluid linearized around a given trajectory. 

However, our setting presents a high degree of generality and therefore 
a wider range of applications. In particular, our formalism can be naturally 
applied to the study of N-level quantum mechanical systems affected 
by a random noise, and it is complementary to the supersymmetric 
approach t 14. 15) to  the problem of N/2 channel localization in a disordered 
conductor. 

2. A V E R A G E S  OF T I M E - O R D E R E D  E X P O N E N T I A L S  

Let us start with the problem of computing Gaussian averages of the 
form 

= I  I ~ exp(-  S[2] ) . .~  [/3,] (1) (o~EP,]) 

where J~(s), for 0 ~< s ~< T, is a traceless  N • N hermitian matrix, 

~2=- l-I r-[ dXu(s) dXj,(s) 1-I dX.(s) (2) 
O<~s<~T i < j  i 

is the Feynman-Kac measure, Y is chosen in such a way that ( 1 ) = I, 

S[2-] = ~-~ Tr 22(s) ds (3) 

a n d / 3  is the time-ordered exponential 

such that r(t)=/3,ro is the general solution of the linear problem i '=2r ,  
r(O) = ro, and 

b,/3 7' =2 (5) 
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We shall now introduce a set of "collective" integration variables in 
order to reexpress (4) in a more tractable form. At the same time, we shall 
chose the new variables in such a way that (3) is quadratic and that the 
Jacobian determinant of the functional transformation is particularly 
simple. 

As a first step, let us Gauss-decompose the matrix/5,:  

where 

/5, = (1 + ~(t))- exp(f(t)).  (1 + O(t)) (6) 

~ u ( t ) - O ,  i<~j  

O u ( t ) - O ,  i>~ j (7) 

ru(t) - r i ( t )  6,j 

N - - I  

r N ( t ) -  - Y', r a t )  (8) 
j = l  

Moreover, in order to ensure the equality/5 o = 1 we shall impose 

~(0) =0,  0(0) = 0  (9) 

We now reexpress the "local" degrees of freedom Xo.(t) in terms of the 
global ones q~o.(t), % ( t ) ,  O•(t). This can be accomplished by making use of 
the basis e0" of the matrix algebra, which is defined by (~,-j)kl= 6~k6jl and 
satisfies the commutation rules 

In particular, one has 

leo ,  Ok1] = 6jkOU-- 6,0kj  

~,,~k/= ~k/(~;; + 6,k -6 , / )  

ee~ o.e - ~ -- e r~- rĴ e o " 

(10) 

(11) 

From these relations the desired expression for X o. readily follows: 

�9 x,~= ~0 + Z r 
k 

k 

+ A0 + Z tO,,A,j + A,Akj) + Z ~b,kA,,~0 
k k , I  

(12) 
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where 

A,j~ e ~'-~j ~ 0ik(0kj + 0k i) 
k (13) 

~iJ " ~ --~)i]-~ 2 r  2 r 1 6 2  "~- " " " 
k k,I  

and a similar definition holds for 00" [for any fixed N the sum in (13) is 
finite, since r is a nilpotent matrix; the same is true for 0]. 

Substituting (12) in (3), one obtains 

� 8 9 1 8 9  =~ i ~ +  u+ r e~-~' @O,i+@ (14) 
j I , k = l  \ k = l  

The form of (14) suggests the introduction of the new variables 

~ i y = 2  O ik ( (~k t+ Ok l ) ( (~Oq - r  r i -r j ,  i< j  
k,l (15) 

q~=O, i>~ j 
so that 

N 

�89189 Z i~+Y',r162 
j = l  i , j  

(16) 

Relation (15) can be inverted giving 

where 

0 o- = ~ r T~ -~'(6k/+ Ckte ~'- ~k)(g 0 + 00") Ztl 
k,I 

(17) 

1, i>j  
XO. = l - j . o -  O, i<~j (18) 

Through (17) one can reexpress the 0 U as functions of the new variables r 
ri and r in a recursive way, thanks to the "triangular" form of the 
equation. For instance, for N =  3 one gets 

f123(t) = 23(S) e -~'cs~--'~-~l~ ds 

f2 0~2(t)= A(s) ds, where A=(r162162 ~-'-~' 

f2 0~3(t) = [A(s) 0,3(s) + 4;~3(s) e -- '~"'~-~:'q ds 

(19) 
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As a matter of fact, for any fixed i the N -  i functions 0 u can be expressed 
through the N - i - 1  functions 0,.+~.j and the remaining variables by 
means of a single quadrature. This is an important point, since for practical 

calculations P, has to be reexpressed in terms of the new variables ~, f, ~. 
We must now substitute A>(s) as an integration variable in the 

functional integral (1) with the new variables ~(s), f(s), q~(s). Again using 
the commutation rules (10), and renaming i~ =p~ for convenience, we 
finally get 

XiJ ~- ~0 "~ 2 ~9 ik ~kj', i < j 
k (20) 

Xiim Pi'~- Z (~ik~ki--~ik~ki) ,  i =  1 ..... U 
k 

Jcij = q~jpj + p t~u + (be 

k 

k, I  

--  ~ 2.,.~b,k~kz(~,,,,~,,,j, i > j  (21) 
k. I, m 

In ref. 1 the N = 3  case was explicitly considered. We observe that the 
matrix elements of )?(t) = ig,P7 j transform as 

Xo.( t ) ~ e~UXo.( t ) (22) 

under the global gauge transformation 

~bu( t )~  e"O~bij(t), ~ i j ( t ) ~  e ~ a ( t ) ,  p i ( t ) o  pi( t )  (23) 

where a,j satisfies aik + a t / =  go., au = - aji. 
As the last step, we must compute the Jacobian determinant of the 

functional transformation (21). Notice first that through the shift given by 

N 

~0" ~ ~ij -- 2 ~)ik ~kj 
k = l  

N 

k = l  

(24) 

822/85/3-4-13 
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(which has Jacobian de '= 1) one can reduce to the computation of 

Oet (25) 

where 3~_ is the strictly lower triangular part of J~. The Jacobian (25) can 
be computed by means of the standard regularization procedure ~-) 

: , ,=:I t , , ) ,  

giving 

t ,, = hn ,  n = l  ..... M ,  h = T / M  ---, O, M --, + oo 

L -L - '  L+L_, 
h ' - "  2 

(26) 

j cc exp (N - j )  pi(s) d s  (27) 
j l 

Applying now the variable transformation ~--* (~, l 3, ~), one sees that the 
functional integral (I) reduces to 

1 
( ~ [ / 5 , 1 )  =--47; f 9 6  @/5 @ r  l 3, q~])ff[( l  +6)ee( 1 +t~)] (28) 

where O= 0[6, 13, $] is obtained by solving (17), f =I~'13(s)ds, the p, are 
constrained by (8), ~,,I/' is the normalization factor, and 

= ~ . l o  \5  L l p T , + E ~ u ~ j , - 2 D  ~ ( N - k ) p k  ds 
= i , j  / , ' =1  

(29) 

In (1) the functional integration is constrained to the surface 

ro = { Xo(s)  = xT,(s), o <. s <~ T} (30) 

In refs. 2 and 7 it was shown, using the Cauchy theorem, that whenever 
is holomorphic in the matrix elements X o one can modify the integration 
surface F 0 to the homotopically equivalent 

G {~ds) = -* �9 Cji(s), Im p d s )  = 0, 0 ~< s ~< T} (31) 
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without affecting the value of the integral. This means that in (28) ~ may 
be regarded as the Hermitian conjugate of r 

We remark that expressions similar to (21) were obtained in the 
framework of conformal field theory)16) However, the explicit forms of the 
variables q~ and of the Jacobian J ,  which are essential for any physical 
application of our method, were not computed there. 

3. T H E  L Y A P U N O V  S P E C T R U M  

We shall now define the Lyapunov exponents 2j, j = 1,..., N, according 
to the relation c9~ 

1 
2, + ... +2k = F l o g  Vol(Prv.  ..... Prvk) (32) 

where v t,..., vk is an orthonormal set of vectors generating a unitary 
k-volume. For  the sake of definiteness we shall choose v j=e j ,  where 
(ej)i = 60.. One has 

�9 1 / 2  

(33) 

where A,,(/Qk), a = 1 . . . . .  I k ,  l k ~ (/~) are the k x k minors of the 1l x k matrix 
h;/k=[PTe~,..., P r e k ] .  Let #j, pj, j =  1,..., N, be the vectors defined by 
(~;)i = 6,~/+ Cu, (PJ)I = (PT)o'" Then 

Pj = ~, (6ik + r e~k(f~j + Okj) e, 
i,k 

N 
= ~ e~k(6,j+Gj)% 

k = l  

= e~J~j + )-" 0k)e~k~k 
k < j  

(34) 

From (34) and the multilinearity of determinants it follows that 

Ao(Mk) = A , , [ p ~  ..... p,,] 

= A~[er't~l ,..., e~kt~k] 

(6,,,~ + Y, lt, k d) ri] ~ = e n + . . -  + r t  \ C / j  r / j / ]  

rq~> I 

( 3 5 )  
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where A i is the minor obtained from the first k rows of M k ,  r o. are strictly 
a ,k  positive integers, and c~j are integer coefficients with c~'k--o. One 

has then 

and 

1 
21 + "'" + 2 k = - ~ [ Z l ( T ) +  ' "  +rk(T) ) ]  

1 

+ 2 ~ l ~  1 +,=,_~ (,.~lC~'kq~;(T')'-I (36) 

1 T 
2 k = - ~ I  ~ pkd t+~{ log[1  +fk (~ ) ] - - l og [ 1  +fk_,(q~)]} (37) 

where 1 +fk((~) is the argument of the logarithm in (36). 
Let us now compute the probability distribution function for 2k. The 

form of (29) implies that the q~-dependent terms in (37) give no contribu- 
tion, since they do not contain the conjugate variables ~u- 

We are therefore left with N - 1  Gaussian integrations over 
t91 . . . . .  Pk-I, Pk+l . . . . .  PN which give the following exact result for the 
statistics of Pk: 

where 

T _ "~ 

2k=D(N-2k+l ) ,  k = l  ..... N 

(38) 

(39) 

The probability distribution function p(2k;T) of the kth  Lyapunov 
exponent 2k is then 

NT (2k -- ,~k)-') (40) 
4D( N-- 1) 

The Lyapunov exponents 2k are statistically dependent due to the con- 
straint (8) and their joint distribution function has a generalized Gaussian 
form. 3 We have thus obtained a complete knowledge of the statistics of the 
Lyapunov spectrum of the mat r ix /5 .  This has an essential application to 
the problem of the computation of the multipoint correlators of a passive 
scalar advected by a random velocity field (see the Appendix). 

3 The Gaussian distribution of the Lyapunov exponent in the N = 2 case was obtained in the 
context of the passive scalar problem in ref. 6. 
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4. C O N C L U S I O N S  

In this work we gave a detailed exposition in the general N x N case 
of a functional integral method for the averaging of time-ordered expo- 
nentials of random matrices which has found several applications in the 
study of the statistical properties of disordered physical systems)14. 6-8~ and 
we have shown how the statistics of the Lyapunov spectrum of a linear 
evolutionary process can be computed exactly. As a matter of fact, our 
method provides a general setting for computing the statistics of linear 
evolutionary systems subjected to a white-noise force field. 

We conclude with some remarks. The definition of the Lyapunov 
exponents as the logarithmic rate of growth of a k-dimensional parallel- 
epiped [see Eq. (32) and ref. 9] is the most natural from a physical 
point of view, e.g., in the passive scalar problem. Generally speaking 
these exponents do not coincide with the logarithms of the eigenvalues 
of the evolution matrix /3. The statistics of the eigenvalues of a similar 
evolution matrix was studied in refs. 10-13. Our method, however, allows 
one to obtain more-detailed statistical information about the evolution 
of initial vectors and to compute nontrivial correlation functions of 
their components. For an application to the passive scalar problem see 
ref. 8. 

Lastly, we would like to remark that a more refined application of the 
functional integral method we described allowed the effective solution of 
the more difficult case of "colored" noiseJ 71 

A P P E N D I X  

The method given in this work has a direct application to the com- 
putation of the statistics of a scalar passively advected by a random 
velocity field. In order to illustrate this point we will briefly recall here the 
terms of the problem. For more detail see refs. 5-8. 

The evolution of a scalar field 0(r, t) passively advected by a velocity 
field v(r, t) and generated by a source q~(r, t) is given by 

0 + v .  V0=~b (A.1) 

If we impose on (A.1) the asymptotic condition 0(r, - o o ) =  0, we get the 
solution 

if0 ~~176 0(r, t) = ~b(R(r, t--s), t--s) ds (A.2) 
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saying that 0(r, t) is completely determined in terms of the trajectories 
R(ro, t) of the fluid particles: 

R = v(R, t), R(ro, 0) = ro (A.3) 

Let us now take ~b and v to be random, 6-correlated-in-time fields. The 
source ~b will be assumed to be spatially correlated on a scale L. The 
velocity field v might be multiscale, with smallest scale larger than or 
of the order of L. The statistics of ~b and v will be assumed to be spatially 
isotropic. 

Generally speaking, one is interested in computing equal-time 
correlators of the form (0(r~, 0) 0(r2, 0)) for [ r 2 - r , [  ~ L .  From the 
isotropicity of the statistics of ~b and v it follows that such quantities are 
rotation-invariant. Moreover, (A.2) implies that the statistics of 0 is 
completely determined in terms of the statistics of the trajectories (A.3). 

In order to subtract the effect of sweeping, let us choose a reference 
flame locally comoving with one of the fluid particlesJ 5-7) We can then 
locally linearize (A.3), obtaining 

R ~ #(t)  R (A.4) 

where a~j - Ovj/Ori, the matrix of velocity derivatives, will be taken to be a 
random Gaussian process. In the general case we have ~ =/~ + ~, where k 
is the antisymmetric part of ~, inducing a rotation of the passive scalar 
blob, and ~ is the symmetric part, representing the stretching of the 
unit blob. We will consider the case of an incompressible fluid, so 
Tr~ = 0. 

More specifically, let us consider the following statistics of & 

@,.,If[#3 = DO exp - ~ 5 ~ dt  

5O=~ Tr - "Tr/?-" = ~ T r  ~ + i  
D,. \D , /  

(A.5) 

Since we are interested in rotation-invariant quantities the final result shall 
be independent of D,.. This arbitrariness allows us to substitute 
( D J D r )  1/2 __. __ i, 1~ ---, it?, ~ --. 2 =  if, + it~, ~1) and thus to consider a generic 
traceless Hermitian matrix A ~ with averaging weight exp{-[1/(2D.,.)] 

�89 Tr .("-} in the place of the generic traceless real matrix ~ with the 
averaging weight (A.5): this allows one to refer to the results of Section 2. 
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F r o m  ro ta t iona l  invar iance  it follows tha t  the stat ist ics of  0 is 
comple te ly  de te rmined  in terms of  the stat ist ics of  the L y a p u n o v  spec t rum 
of  the mat r ix  P ,  defined by  

/~, = 2 P , ,  P o = l  (A.6) 

This  reduces the p rob l em to tha t  s tudied in the preceding  sections. The  
Gauss i an  stat ist ics of  the L y a p u n o v  exponen t s  agrees wi th  an old result  ~7~ 
a b o u t  the Gauss i an  statist ics of  a line e lement  in a ~-cor re la ted- in- t ime  
veloci ty  field. 
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